NET4101

Internet par la pratique

Andrea Araldo, Laurent Bernard, Franck Gillet, **Rémy Grünblatt**, Antoine Lavignotte, Jehan Procaccia

Ce document est soumis à une licence Creative Commons Attribution - Partage dans les Mêmes Conditions 4.0 International (CC BY-SA 4.0)

Organisation de la séance

- 1. Présentation de l'équipe pédagogique
- 2. Organisation générale du module
- 3. Rappels autour de l'architecture d'Internet
- 4. Présentation des salles TPs
- 5. En groupes:
 - · Visite de la plateforme THD
 - · Visite d'une salle serveur de la DISI
 - · Visite d'un local technique

Équipe pédagogique

Membres

Andrea Araldo Maître de conférences

Laurent Bernard Directeur d'études

Franck Gillet Ingénieur plateforme

Rémy Grünblatt

Maître de conférences

NET4101 - Rémy Grünblatt - ((2) (1) (2)

Antoine Lavignotte
Directeur d'études

Jehan Procaccia Ingénieur système et réseaux

Coordonateur du module

Antoine Lavignotte
Directeur d'études

- · Point de contact concernant tout ce qui est administratif :
 - Absences et justificatifs
 - Questions diverses
 - · Remarques, réclamations...
- Email : antoine.lavignotte@telecom-sudparis.eu

Organisation générale du module

Planning

10 séances de TP dont une séance d'évaluation :

- TP 1 : Rappels autour de l'infrastructure d'Internet et visites
- TP 2 : Outils réseaux (Linux, Cisco, Windows)
- TP 3 : Commutation, Spanning Tree et Vlan
- TP 4 et 5 : Protocoles IP : Adressage, DNS, ARP, HTTP
- TP 6 : Protocole de routage OSPF
- TP 7 : Protocole de routage BGP
- TP 8 : Informatisation des réseaux, déploiements automatisés des configurations
- · TP 9 : Sécurité des réseaux
- · TP 10 : Évaluation

Planning

10 séances de TP dont une séance d'évaluation :

- TP 1: Rappels autour de l'infrastructure d'Internet et visites
- TP 2 : Outils réseaux (Linux, Cisco, Windows)
- TP 3 : Commutation, Spanning Tree et Vlan
- TP 4 et 5 : Protocoles IP : Adressage, DNS, ARP, HTTP
- TP 6 : Protocole de routage OSPF
- TP 7 : Protocole de routage BGP
- TP 8 : Informatisation des réseaux, déploiements automatisés des configurations
- · TP 9 : Sécurité des réseaux
- · TP 10 : Évaluation

Travail à faire à la maison ou en début de séance (QCM) pour la majorité des séances.vvccceulgvifiikgbdfdvilttlhedutgitnfdttgfni

Nouveauté : Cahier de manip

Le cahier de manipulation, souvent abrégé en « cahier de manip », est un journal de laboratoire, généralement un cahier de grande taille, tenu pour enregistrer le détail des manipulations faites dans le cadre d'un projet.

— Wikipedia

Nouveauté : Cahier de manip

Le cahier de manipulation, souvent abrégé en « cahier de manip », est un journal de laboratoire, généralement un cahier de grande taille, tenu pour enregistrer le détail des manipulations faites dans le cadre d'un projet.

— Wikipedia

- · Un support physique et manuscrit : cahier, ...
- Contient le détail du travail effectué pendant chaque séance et sa mise au propre à la maison
- Contient une section « pense-bête » autour des commandes et manipulations diverses (Cisco, Linux, Windows...)
- Personnel
- · Seul document autorisé à l'examen

Séance 1

Réponse aux questions des TPs

Commandes utiles

Observations Schémas

Données utiles

Acronymes

Partie « brouillon » remplie pendant le TP

Partie « *au propre* » remplie à la maison après le TP

Nouveauté : Cahier de manip

... et bien sûr, ce cahier sera récupéré pour notation pendant le module : il ne faut pas faire d'impasses sur son contenu!

Notation

En résumé :

- · Présence : 10% de la note
- Évaluation continue (QCM, Cahier de Manip, ...) : 30% de la note
- · Un contrôle final (TP): 60% de la note

d'Internet

Rappels autour de l'architecture

Internet est un réseau!

Internet est un réseau!

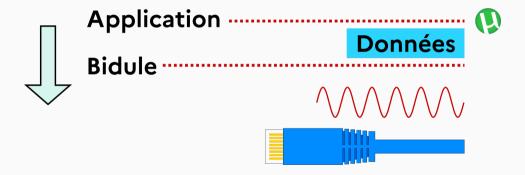
But d'un réseau : Transmettre de l'information de manière fiable entre différentes parties

Internet est un réseau!

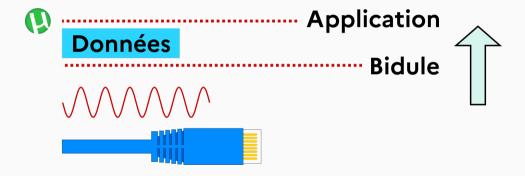
But d'un réseau : Transmettre de l'information de manière fiable entre différentes parties

Mais Internet est un réseau de réseaux :

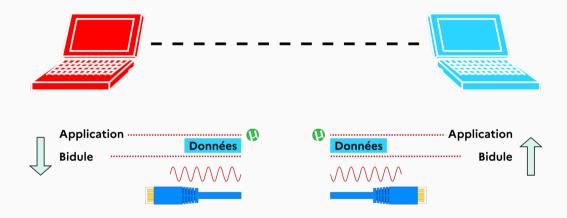
Internet est un réseau!

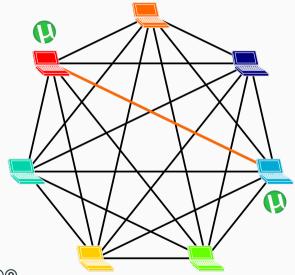

But d'un réseau : Transmettre de l'information de manière fiable entre différentes parties

Mais Internet est un réseau de réseaux :

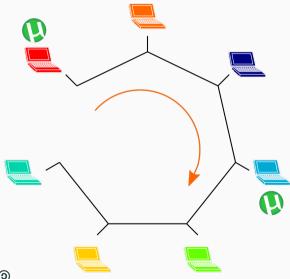


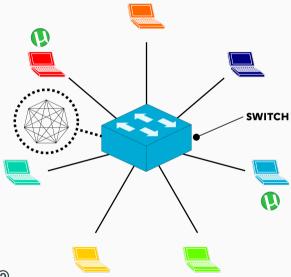
Pourquoi plusieurs réseaux et pas simplement un réseau unique global?

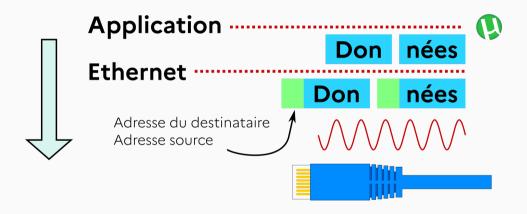

Construisons un réseau tout simple!

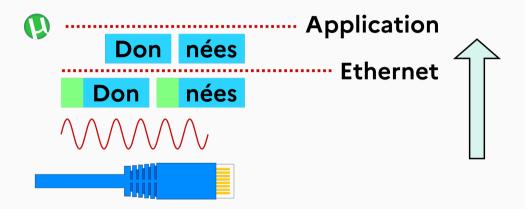


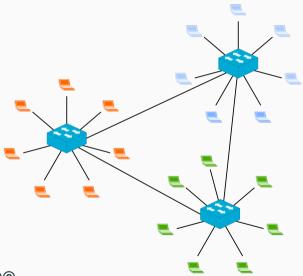

Construisons un réseau tout simple!

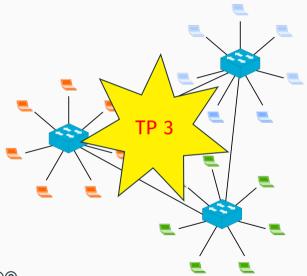





Une solution:


Une solution (moderne):


Construisons un réseau un peu moins simple!


Construisons un réseau un peu moins simple!

Comment passer à l'échelle?

Comment passer à l'échelle?

Internet est mondial et distribué

Historiquement, plusieurs universités et laboratoires de recherche ont créé leurs propres réseaux pour connecter leurs terminaux à leurs machines ou leurs centres de recherche entre eux, en utilisant la *commutation de paquets* :

- NPL Network (UK, 1965)
- ARPANET (US, 1966)
- CYCLADES (FR, 1971)

Internet est mondial et distribué

Historiquement, plusieurs universités et laboratoires de recherche ont créé leurs propres réseaux pour connecter leurs terminaux à leurs machines ou leurs centres de recherche entre eux, en utilisant la *commutation de paquets*:

- NPL Network (UK, 1965)
- ARPANET (US, 1966)
- · CYCLADES (FR, 1971)

Internet a été créé pour connecter ces différents réseaux incompatibles entre eux...

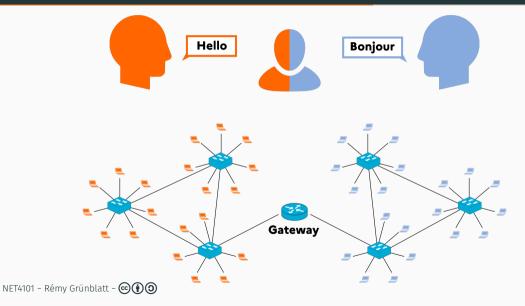
Internet est mondial et distribué

Historiquement, plusieurs universités et laboratoires de recherche ont créé leurs propres réseaux pour connecter leurs terminaux à leurs machines ou leurs centres de recherche entre eux, en utilisant la *commutation de paquets*:

- NPL Network (UK, 1965)
- ARPANET (US, 1966)
- · CYCLADES (FR, 1971)

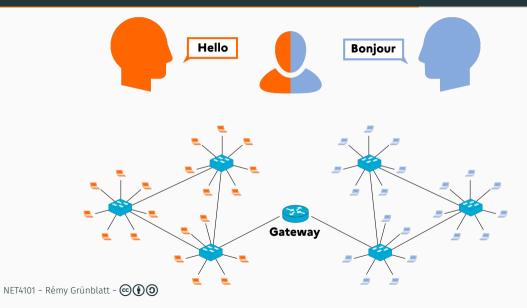
Internet a été créé pour connecter ces différents réseaux incompatibles entre eux...

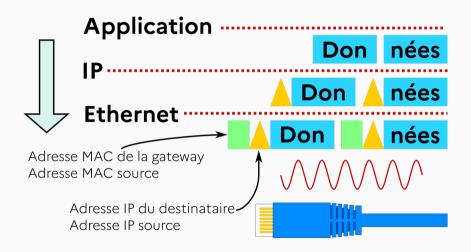
... mais comment connecter des réseaux incompatibles entre eux?

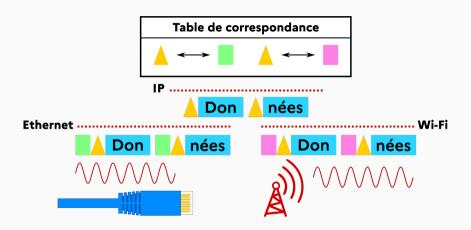

Comment connecter des réseaux incompatibles entre eux?

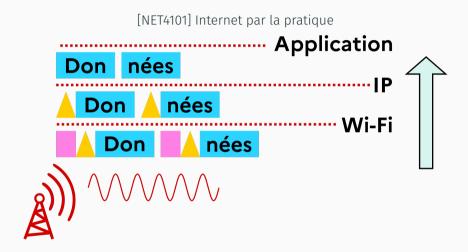
Comment connecter des réseaux incompatibles entre eux?

Comment connecter des réseaux incompatibles entre eux?

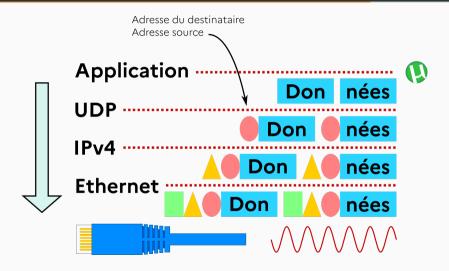

Une première définition d'Internet

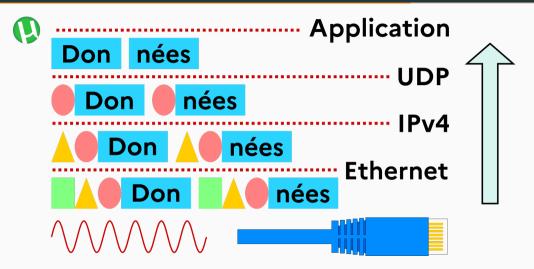

Les réseaux d'universités *a priori* incompatibles entre eux ont été connectés par des « *gateways* » (de nos jours : routeurs) pour créer *Internet*.

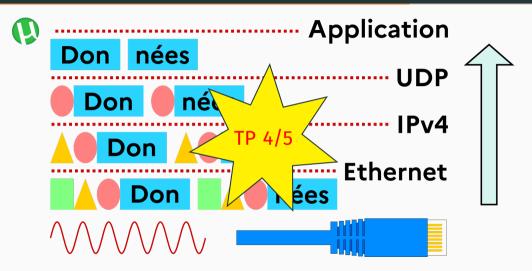

Une première définition d'Internet

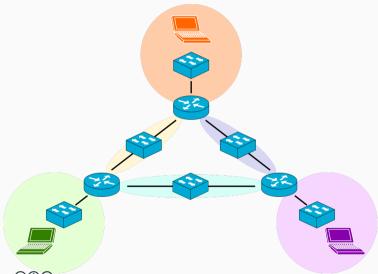

Les réseaux d'universités *a priori* incompatibles entre eux ont été connectés par des « *gateways* » (de nos jours : routeurs) pour créer *Internet*.

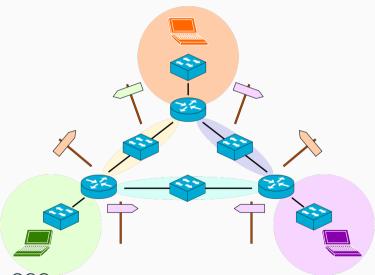
Internet agit comme une **interface** entre des réseaux avec différentes technologies, gouvernances, ...!

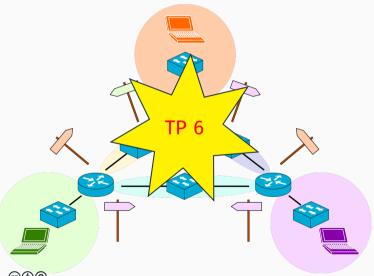




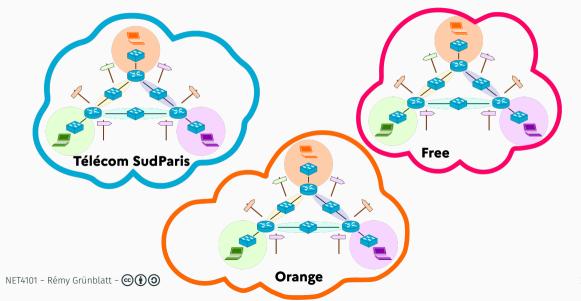


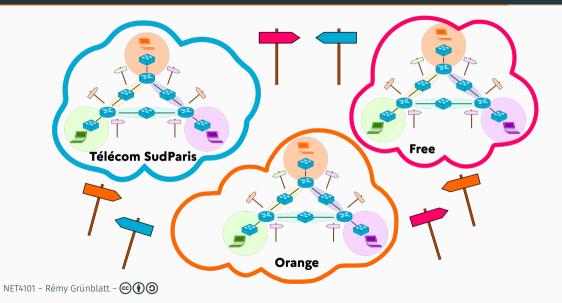




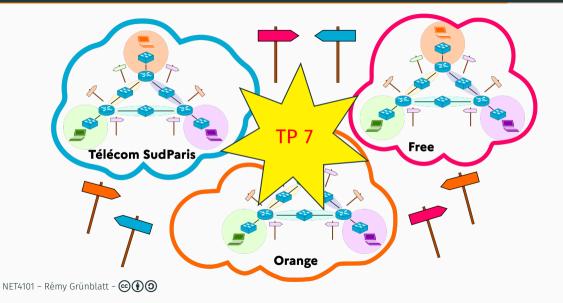


Une gateway ne peut pas être directement connectée à l'ensemble des machines (ou réseaux)!





Juste une dernière chose...



Juste une dernière chose...

23

Juste une dernière chose...

Modèles de l'Internet

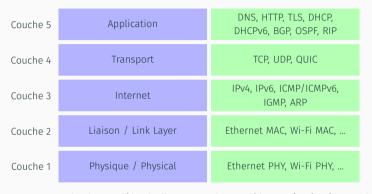


Figure 1 – Exemple de modèle de l'Internet, le modèle TCP/IP à 4/5 couches

Modèles de l'Internet

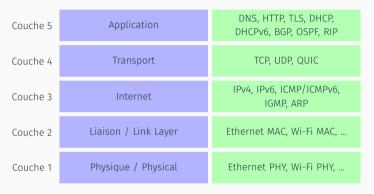


Figure 1 – Exemple de modèle de l'Internet, le modèle TCP/IP à 4/5 couches

On aime représenter ces protocoles en « pile », mais les éléments de la pile ne sont *pas vraiment* statiques, et ne représentent pas vraiment des relations de dépendances *fortes*!

Deux visions d'Internet

Internet, c'est des protocoles permettant l'inter-opérabilité :

- · IPv4/IPv6, ICMP/ICMPv6, ARP
- DNS, HTTP, TLS, DHCP/DHCPv6
- OSPF, BGP, RIP

- · TCP, UDP, QUIC
- Ethernet, Wi-Fi, GPON, 3G, 4G, 5G, ...?

Deux visions d'Internet

Internet, c'est des protocoles permettant l'inter-opérabilité :

- IPv4/IPv6, ICMP/ICMPv6, ARP
- DNS, HTTP, TLS, DHCP/DHCPv6
- · OSPF, BGP, RIP

- · TCP, UDP, QUIC
- Ethernet, Wi-Fi, GPON, 3G, 4G, 5G, ...?

Ces protocoles sont définis dans les RFCs (Request For Comments), des documents de l'IETF (Internet Engineering Task Force) :

• IPv4: RFC 791

• BGP-4: RFC 4271

• DoH : RFC 8484

• IPv6 : RFC 8200

DHCPv6 : RFC 8415

• HTTP/3: RFC 9114

• TCP : RFC 793 9293

• QUIC: RFC 9000

• ...

Deux visions d'Internet


Internet, c'est des infrastructures physiques et des équipements connectés entre eux :

- · des terminaux : serveurs, ordinateurs, smartphones...
- · des équipements « actifs » : routeurs, commutateurs, répéteurs, amplificateurs...
- · des équipements « passifs » : câbles en cuivre, fibres optiques, spectre radio...

... et en parlant d'infrastructures :

3 visites de 20 minutes chacune, en parallèle, en groupes :

- · Salle Serveur Étoile : Jehan Procaccia
- · Salle THD : Antoine Lavignotte
- · Local technique : Rémy Grünblatt
- · Salle TP (ici) : Andrea Araldo

