TD No 1

Rémy Grünblatt – remy@grunblatt.org

6 février 2020

Note: L'écriture de ce document a été très fortement inspirée du cours en ligne massifs et ouverts (MOOC) « Objectif IPv6 », dont le contenu est en licence Creative Commons (CC-BY-NC-SA). Ce cours est d'ailleurs une ressource conseillée pour la culture générale.

Réseaux IPs: Introduction

- 1. Quelle est la différence entre une machine, une interface, une adresse, un port?
- 2. Dans un réseau IP quoi sert une adresse réseau?
 - À identifier une machine;
 - À localiser une machine;
 - Les deux ;
- 3. Quelle est la taille d'une adresse IPv4, en bits? En octets? Même question pour une adresse IPv6.
- 4. Une adresse IPv6 étant quatre fois plus longue qu'une adresse IPv4 permet :
 - d'adresser quatre fois plus de machine qu'IPv4;
 - de ne jamais renuméroter les réseaux;
 - d'avoir un plan d'adressage quasi-illimité;
 - de donner une adresse a des équipements qui peuvent être potentiellement mis en réseau;
- 5. Quel est le nombre total d'adresses IPv4 disponibles?
- 6. Quel est le nombre total d'adresses IPv6 disponibles? (Indice : $3,402823*10^k$ avec $k\in\{15,25,38,128\}$)
- 7. Avant la mise en place de routage « classless » (*Classless Inter-Domain Routing*, CIDR) en 1993, il était courant d'utiliser des classes pour diviser l'espace d'adressage IPv4 et permettre le routage sur Internet. Rappeler les classes et leurs caractéristiques dans le tableau ci-dessous :

Classe	Premiers bits	Adresse de début	Adresse de fin	Nombre total d'adresse	Masque de sous-réseau	Équivalent en notation CIDR
					255.0.0.0	/8
						/16
						/24

Zoom sur la notation

1. La notation la plus commune pour une adresse IPv4 est la notation décimale à point (par exemple, 172.16.254.1): les 32 bits d'une adresse (soit 4 octets) sont séparés en 4 groupes, chaque groupe de caractères représentant la valeur décimale de chaque octet. IPv6 a adopté la notation hexadécimale pour représenter chaque octet de l'adresse par un couple de nombre hexadécimaux. Le découpage se fait en 8 champs de 16 bits (2 octets) séparés par le caractère ':'.

Convertir les adresses suivantes dans leurs notations habituelles :

- IPv4: 10101100 00010000 111111110 00000001
- 2. Par convention, il n'est pas nécessaire d'écrire les zéros de poids fort dans chaque mot de 16 bits. Ré-écrire l'adresse IPv6 sans ces zéros.

Note : Lorsque l'on souhaite préciser le port d'une adresse IPv6, il est nécessaire d'encadrer cette adresse entre crochets. La RFC 5992 précise l'ensemble des règles nécessaires pour afficher une adresse IPv6.

Adressage

On considère le réseau suivant, composé de deux routeurs, et trois segments ethernets.

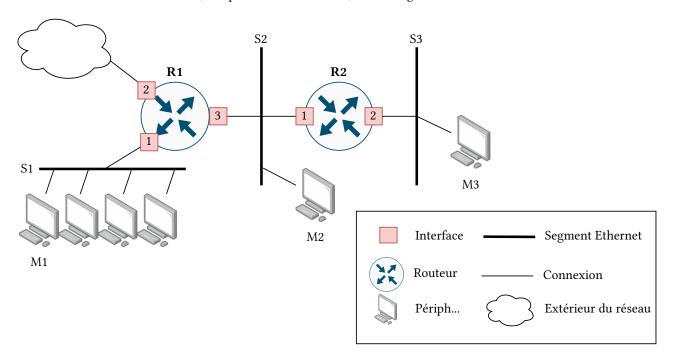


FIGURE 1 - Exemple de réseau.

On suppose que l'ensemble des adresses disponible pour ce réseau est 134.214.0.0/16.

- 1. On suppose que le segment ethernet 1 va posséder la moitié des machines du réseau (hors routeurs), et que les segments 2 et 3 accueilleront un même nombre de machine. Proposer une segmentation des adresses pour ce réseau.
- 2. Attribuer à chaque interface de ce réseau une adresse IPv4. Traditionnellement, le routeur possède l'adresse la plus haute (par exemple, 192.168.1.254 dans un réseau 192.168.1.0/24). À quoi sert la dernière adresse?
- 3. Déterminer la table de routage pour M1, M2, M3, R1 et R2. On suppose que le prochain saut liant R1 par son interface 2 à « l'extérieur » est l'adresse 42.42.42.42. Un exemple de représentation de table de routage est cidessous :

Destination	Gateway	Interface

Table 1 – Table de routage